Noise Benefits in Expectation-Maximization Algorithms

نویسنده

  • Osonde Adekorede Osoba
چکیده

This dissertation shows that careful injection of noise into sample data can substantially speed up Expectation-Maximization algorithms. Expectation-Maximization algorithms are a class of iterative algorithms for extracting maximum likelihood estimates from corrupted or incomplete data. The convergence speed-up is an example of a noise benefit or"stochastic resonance"in statistical signal processing. The dissertation presents derivations of sufficient conditions for such noise-benefits and demonstrates the speed-up in some ubiquitous signal-processing algorithms. These algorithms include parameter estimation for mixture models, the $k$-means clustering algorithm, the Baum-Welch algorithm for training hidden Markov models, and backpropagation for training feedforward artificial neural networks. This dissertation also analyses the effects of data and model corruption on the more general Bayesian inference estimation framework. The main finding is a theorem guaranteeing that uniform approximators for Bayesian model functions produce uniform approximators for the posterior pdf via Bayes theorem. This result also applies to hierarchical and multidimensional Bayesian models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noisy Expectation-Maximization: Applications and Generalizations

We present a noise-injected version of the Expectation-Maximization (EM) algorithm: the Noisy Expectation Maximization (NEM) algorithm. The NEM algorithm uses noise to speed up the convergence of the EM algorithm. The NEM theorem shows that injected noise speeds up the average convergence of the EM algorithm to a local maximum of the likelihood surface if a positivity condition holds. The gener...

متن کامل

The Noisy Expectation-Maximization Algorithm

We present a noise-injected version of the Expectation-Maximization (EM) algorithm: the Noisy Expectation Maximization (NEM) algorithm. The NEM algorithm uses noise to speed up the convergence of the EM algorithm. The NEM theorem shows that additive noise speeds up the average convergence of the EM algorithm to a local maximum of the likelihood surface if a positivity condition holds. Corollary...

متن کامل

Comparison of a noise-weighted filtered backprojection algorithm with the Standard MLEM algorithm for poisson noise.

Iterative maximum-likelihood expectation maximization and ordered-subset expectation maximization algorithms are excellent for image reconstruction and usually provide better images than filtered backprojection (FBP). Recently, an FBP algorithm able to incorporate noise weighting during reconstruction was developed. This paper compares the performance of the noise-weighted FBP algorithm and the...

متن کامل

Noise-enhanced clustering and competitive learning algorithms

Noise can provably speed up convergence in many centroid-based clustering algorithms. This includes the popular k-means clustering algorithm. The clustering noise benefit follows from the general noise benefit for the expectation-maximization algorithm because many clustering algorithms are special cases of the expectation-maximization algorithm. Simulations show that noise also speeds up conve...

متن کامل

DP-EM: Differentially Private Expectation Maximization

The iterative nature of the expectation maximization (EM) algorithm presents a challenge for privacy-preserving estimation, as each iteration increases the amount of noise needed. We propose a practical private EM algorithm that overcomes this challenge using two innovations: (1) a novel moment perturbation formulation for differentially private EM (DP-EM), and (2) the use of two recently devel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1411.6622  شماره 

صفحات  -

تاریخ انتشار 2013